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Abstract-The optimal dimensions of circular fins with variable profile, and temperature-dependent thermal 
conductivity are obtained. A profile of the form y = (~/2)[1+ (r,Jr)“] is studied, while the thermal con- 
ductivity considered is of the form k = kO[l +E(T- T,)/r,]. The results have been expressed in terms of 
suitable dimensionless parameters. A correlation for the optimal dimensions of a constant and variable 
profile fins is presented in terms of reduced heat-transfer rate. It is found that a parabolic circular fin with 
n = 2 gives an optimum performance. For example, an increase in heat-transfer rate (as compared to 
constant thickness fin) by about 20% for the optimal fin profile is observed. The effect of thermal 
conductivity on the optimal dimensions is negligible for the variable profile fin. It is also observed that in 
general, the optimal fin length is greater for the optimal fin profile. Copyright 0 1996 Elsevier Science Ltd. 

INTRODUCTION 

A large number of engineering problems require high- 
performance heat transfer components with pro- 
gressively smaller weights, volumes, costs or accom- 
modating shapes. Circular fins are one of such heat 
exchanging devices that are used extensively to 
increase heat-transfer rates, particularly in compact 
heat exchangers for the aerospace industry. The design 
and optimization of these fins is generally based on 
two approaches [l-4]. In the first approach, a profile 
is selected and based on this, optimal dimensions of 
the fin are determined. The second approach is to 
maximize the heat dissipation for a given volume of 
the fin. For purely conductive and convective fins, 
the criterion for the optimal fin problem was first 
proposed by Schmidt [5]. He argued intuitively that 
there not only exists an optimum fin size when the fin 
profile is specified, but also an optimum fin profile 
that maximizes the heat-transfer rate. Schmidt’s pre- 
dictions were confirmed later by Duffin [6], who used 
a variational calculus approach to the fin problem. 

Fin analysis considering temperature-dependent 
thermal conductivity and internal heat generation was 
presented by Hung and Appl [7] and Aziz [S]. 
However, the optimum shape for straight fins and 
spines with temperature-dependent conductivity was 
investigated by Jany and Bejan [9]. There are several 
other studies to obtain optimum fin shapes with 
different assumptions [1@14]. Razelos and Imre [15] 
studied the optimal dimensions of circular fins with 2 
trapezoidal profile (constant slope) and variable ther- 
mal properties. They showed that for constant thermal 
conductivity, the optimum base thickness and volume 

of the fin are inversely proportional to the con- 
ductivity of the fin material, while the optimum length 
and fin effectiveness are independent of the fin- 
material properties. 

In this paper, optimization of circular fins with a 
general power-law profile and temperature-dependent 
thermal conductivity is considered. The problem is to 
maximize the heat-transfer rate for a given fin volume. 
The optimization variables are the fin length and 
power of the profile function. It is assumed that the 
predominant modes of heat transfer are conduction 
and convection and the effect of radiation is ignored. 

MATHEMATICAL FORMULATION 

Consider a circular fin of a homogeneous material, 
with a symmetric profile, attached to a cylindrical 
surface of radius r,, with a base temperature T,, which 
is measured in excess to the ambient fluid temperature, 
7’,. The profile of the fin is y E y(r), the thermal 
conductivity k(T), and heat-transfer coefficient h. It 
is assumed that both faces of the fin are exposed to an 
environment at temperature T,. The geometry of the 
fin is shown schematically in Fig. 1. Assuming the fin 
to have one-dimensional conduction, the equation for 
steady-state temperature of the fin can be written as 
[15-171 

$ k(Zxr)[2y(r)]$ 1 dr = 2h(2xr) ds( T- T,) 

(1) 

where 
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NOMENCLATURE 

4 dimensionless parameter (B, = hl,iko) Greek symbols 

E, fin effectiveness (Er = q/q,,) a ratio of radii (/II = rC/rO) 
h heat-transfer coefficient c parameter describing the variation of 

w.m-‘.Km’] thermal conductivity 
k thermal conductivity w * m ’ * K ‘1 ‘1 dimensionless fin profile [q = y(r)/nj] 
L length of the fin [m] ;: dimensionless coordinate (c = r/r,,) 
n parameter describing the variation of 1 dimensionless parameter 

the profile [V = r,,(h/wk)’ ‘1 

4 heat-transfer rate [W] 0 dimensionless temperature 

Q dimensionless heat transfer [n =(T-T,)/T,,]. 
(Q = 4/47r1$1T,,) 

I radial coordinate [m] Subscripts 
T temperature [K] al aluminum 
r,, base temperature in excess to the b base 

ambient temperature [K] c corrected 
u dimensionless volume cu copper 

(6’ = k,, P’/4nv;h) e fin tip 
C’ volume of the fin [m’] 0 bore 
Ll‘ fin’s base half thickness [m] opt optimal 

.t’ longitudinal coordinate [ml. Y. ambient. 

(ds)’ = (dr)’ + (dr)’ (2a) VP,,) = Th =(TofT, ) (Qa) 

ds = dr(l +r”)’ ’ 

d), 
J’ = z. 

(2b) 

(2c) 

k$+h(T-r,) 
I 

= 0, ifl$rJ = ~3, # 0 
r=_ll 

(4b) 

On substituting equations (2a-2c) into equation 
(I), we get 

and the boundary conditions are. 

T(r,) is bounded if r(r,) = 0. (4c) 

The fin-optimization problem is defined as follows : 

(3) 
given the volume of the fin 

v = 4x .r(r)rdr. (5) 

+------b------l 
Fig. I. Schematic diagram of a variable profile circular fin. 
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we seek the bore half thickness w, the length 
L = (r, - r,,), and the power in the profile function n, 
that maximizes the heat dissipated by the fin. It should 
be noted that under steady-state conditions, the heat 
transfer from the fin can be expressed as 

qf= -4nr,wk % , (3 ,=ro 
(6) 

with the constraint that 

qf > qb = 4nrowhb(Tb- Tm)t (7) 

where qb, h,,, T,, refer to the values of the corresponding 
quantities if no fin were present. We also assume that 
the thermal conductivity of the fin material is expre- 
ssed as 

k = k,[l +s(T- T,)/T,,], 

and the fin profile is given by 

(8) 

y(r) =: 1+ : 
” 

[ 01 (9) 

On integrating equation (5) where y(r) is given by 
the above equation, we get 

V= w 
[ 

n(rz-ri)+ (2_n) ~(r~-‘-r~-~) . 1 (10) 

For the sake of generalization, it is appropriate 
to nondimensionalize the above equations similar to 
those of Razelos and Imre [ 151. Introducing dimen- 
sionless (or reduced) variables 

0 = (T- TAT,, 5 = r/r,, V = y(r)/w, (11) 

and substituting in equation (1)) we get 

$((l+,e,$)= ,ov~[l+(~)i]“2 (13) 

where 

1:2 

(14) 

The boundary conditions, given by equation (4) in 
their nondimensionalized form, are 

4 = 1 e(1) = 1; (154 

and 

=0 at<=fl ifr@)#O; 

(15b) 

Q(< = /I), is bounded if r@) = 0. (15c) 

The dimensionless forms of the profile equations 
are 

and 

n 1 “+’ 

n’=-U T 0 

(16) 

(17) 

where, v, /I and n are parameters to be determined by 
the optimization process. The dimensionless tem- 
perature 0, is obtained by solving the above problem 
as a function of spatial variable r and the parameters 
8, v, E, B, and n. The reduced volume Umay be defined 
as [15] 

(/3l-1)+&(p-l) )  1 
(18) 

and the functional dependence of the thermal con- 
ductivity in dimensionless form becomes 

K= k/k0 =(l+~@). (19) 

Now, the problem at hand is in terms of reduced 
variables. For a given value of U, we can calculate the 
values of v, /? and n which will maximize the reduced 
heat dissipation defined as [ 151 

or on using equation (6), we get 

Q = -U+Ee)de 
V2 2+,’ 

(20) 

(21) 

The optimal values should be such that they satisfy 
the condition given by equation (7) which can be 
expressed in dimensionless form as 

’ (22) 

where Ef is defined as the effectiveness of the fin 

SOLUTION METHODOLOGY 

Following Razelos and Imre [15], the boundary- 
value problem given by equations (13)-( 15) can be 
reduced to two first-order ordinary differential equa- 
tions by defining X, = 0 ; X2 = Kq@‘. This gives 

x; = 
x2 

VW -t&Xl) 
(23) 
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X,(l) = I and 

(25) 

After the above manipulations, the problem is in a 
form suitable for numerical solution. For opti- 
mization and integration, we have used a simulation 
and optimization package [ 181. It uses the subroutine 
DBVPFD of IMSL library [19] for integration of 
equations (23))(25). The integration routine 
DBVPFD uses a variable order, variable step size 
finite-difference method with deferred corrections. 
The optimization procedure uses Feasible Sequential 
Quadratic Programming FSQP [20]. It is a set of 
FORTRAN subroutines for the minimization of a 
nonlinear, smooth objective function subject to both 
equality and inequality constraints, with simple 
bounds on the variables. 

We emphasize that the objective of this study is to 
maximize Q, given by equation (21) subject to the 
constraint (22). It should be noted that the problem 
is formulated as a nonlinear optimization problem 
similar to the one presented in the Appendix. Note 
that the problem at hand has only two parameters 
(n,r,) which need to be determined by the opti- 
mization process. This will in turn help us calculate 
M’. At any point in the search for an optimal solution. 
these two parameters are calculated by FSQP. Sub- 
sequently, these values are then used in the IMSL 
routine for integrating equations (23)-(25). Once the 
integration is performed. the calculated values of Q 
and the constraints E,. are fed back to the optimizer 
FSQP, based on which the search proceeds. The flow 
chart of the method discussed above is presented in 
Fig. 2. The program that was developed is written in 
such a way that it maintains the maximum generality. 
The salient features of the program are : 

l-z nhj., Cons. 

t 

??include or suppress the effect of convective tip ; 
??include or suppress the effect of variable thermal 

conductivity ; 
??change the profile function to any desired value. 

RESULTS AND DISCUSSION 

The optimum values of v,,~,, U&f, and /lop, are plot- 
ted against Q for the constant thickness fin with E = 0, 
in Fig. 3. These results are exactly the same as those 
of ref. [15]. It should be noted that this validation 
of optimum fin dimensions for a constant thickness 
annular fin confirms the fact that the optimization 
technique (FSQP) works for the problem under inves- 
tigation 

The plots for the optimum values of \~Opl, C/A,,:, &,,, 
II vs Q for the fin with variable profile of the form 
J = (~!‘2)[1 + (r,/r)n] are shown in Fig. 4. We emph- 
asize that the plot of &,, vs Q in this figure shows that 
for a given Q, the optimum dimensions of the fin can 
be read directly. In addition, Fig. 4 shows a somewhat 
higher value of reduced fin radius (&,) compared to 
the constant thickness fin. It can be seen from the 
figure that for a given volume of fin, the heat transfer 
Q for the optimal fin profile increases by about 20% 
as compared to a constant thickness fin. For example, 
for the optimal reduced volume, r/,,, = 1 gives the 
reduced heat transfer Q = 0.9 for the constant thick- 
ness fin (refer to Fig. 3) compared to Q = 1.10 for the 
optimal fin profile (refer to Fig. 4). This is further 
demonstrated later by an illustrative example. It is 
also interesting to note that the value of n stays 
constant, and is equal to 2 for the variable fin profile. 
That is, a circular fin of parabolic profile gives an 
optimum performance. 

The variation of the heat transfer Q with respect to 
the parameter E was studied by varying -0.4 ,< E < 

Optimization Routine 
(FSQP) 

rev n 

Integration 
(IMSL) 

If Optimal 

-Jl stop 

Fig. 2. Procedure for finding optimum fin dimensions. 
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2 3 4 5 67 1 E+OO 2 3 4 5 67 1 E+Ol 
Q- 

Fig. 3. Optimal reduced dimensions of a straight circular fin vs the reduced heat-transfer rate, with constant 
thermal conductivity. 

I I I Ill1 I I I I Illll 

3 4 5 6 7 1 E+OO Q2+ 3 4 5 67 lE+Ol 

Fig. 4. Optimal reduced dimensions of a variable-profile circular fin vs the reduced heat-transfer rate, with 
constant thermal conductivity. 
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= 2.60 
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E' 
Fig. 5. The reduced heat-transfer rate (Q) vs variable thermal conductivity constant (E) for an optimum 

profile fin. 

0.4. The results are presented in Fig. 5. It is observed 
from this figure that Q shows an increasing trend as E 
is increased from -0.4 to 0.4. The optimal dimensions 
are not affected and show no appreciable change. This 
observation is in agreement with the results for a trap- 
ezoidal profile (constant slope) fin presented in ref. 

u51. 
Correlation fbr the optimal dimensions 

It is useful to present the numerical results obtained 
for the optimal dimensions in the form of regression 
equations. An attempt was made to find the cor- 
relation for the optimal dimensions (vopl, /Yopt, U,,,) by 
curve fitting these variables as a function of Q. 
Regression analysis was carried out by using the stat- 
istical analysis package STATGRAPHICS [21]. The 
following functional forms were found to be most 
suitable. 

v,pt = a, + (b, /Q’i) (26) 

/lop, = u: +h*Q’z. (27) 

Uopt = +Qha, (28) 

where a,, h,, cl, a2, h2, c2, q and b, are regression 
constants determined by regression analysis using the 
statistical analysis package [21]. The results for these 
parameters are presented in Table 1. 

To incorporate the effect of variable thermal con- 
ductivity on the heat-transfer rate, a regression analy- 
sis was carried out between E and Q. The value of Q 
at c = 0 is considered as a reference value (Q”) and 
the corrected value of reduced heat-transfer rate (QJ 
is modelled as 

Qc = Q,,+d,E+d2E2+d3c3, (29) 

where d, = 0.4069, d2 = -0.1669, d3 = 0.075. 
Investigation of the values of vopt, /I”,, and U”,, at 

given values of Q showed that the above regression 
equations are in excellent agreement with the numeri- 
cal data in the range 0.2 < Q < 12.0, which covers 
most of the practical cases. This is further illustrated 
in the example given below. 

Illustrative example 
We now illustrate the usefulness of the results pre- 

sented, by means of an example problem. Consider a 
situation in which it is required to determine the opti- 
mal dimensions of a circular fin of bore radius 0.05 m, 
and Q = 2.0 needs to be dissipated. The temperature 
difference between the bore and coolant is 100 K and 
other variables are, h = 200 W.m-**K-‘, kc, = 382 
W-m-l-K_‘, k,, = 228 W-m-‘*Km’. It is required 

Profile 

Constant 
Variable 

Table 1. Regression constants for equations (26)-(28) for the constant and optimal fin profile 
________ 

a1 h, “I u2 bz (‘2 a, h, 
.____ _~ ~_~ ~__ ~~~~~ ~~~~ 

0.066 1.081 0.886 0.68 1 I.429 0.579 1.588 2.448 
0.021 1.005 0.853 1.093 0.895 0.787 0.893 2.584 
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Table 2. Optimal values for the example from graphical results 
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Material Profile ” u r&o n w [ml V VI 

Aluminum Constant 0.647 8.41 2.19 1.620 x IO-’ 3.456 x 10m4 
Optima1 0.575 5.29 2.15 2.0 1.055 x 10-j 2.175 x lO-4 

Copper Constant 0.647 8.41 2.79 2.710 x 10m2 5.791 X IO-4 
Optimal 0.575 5.29 2.75 2.0 1.767 x IO-’ 3.643 x 1O-4 

~___ 

Table 3. Optimal values for the example using equations (26)-(28) 

Material Profile Y u r&0 n w [ml V b’l 

Aluminum Constant 0.651 8.660 2.815 1.632 x lo-’ 3.550 x 1o-4 
Optimal 0.577 5.353 2.640 2.0 1.159x 10-j 2.200 x 1o-4 

Copper Constant 0.651 8.660 2.815 2.741 x 10-l 5.963 x lo-“ 
Optima1 0.577 5.353 2.640 2.0 1.960x 10-j 3.686 x 10m4 

to determine the optimal dimensions for a circular fin 
for the following two cases : (i) constant thickness and 
(ii) optimal profile. For such a design problem, we 
can use either the results presented in a graphical form 
or regression equations. The optimal dimensions of 
the constant thickness and optimal fin profile are 
taken from Figs. 3 and 4, and are presented in Table 
2. Similar results can also be obtained by using the 
regression equations (26)-(28) and the results are 
shown in Table 3. Comparison of the optimal dimen- 
sions obtained from graphs and the regression equa- 

tions compare favorable (within + 3%). This further 
consolidates the validity of these equations. 

Performance of optimal and constant profile fins 
Figures 6 and 7 show the performance for the opti- 

mum fin profile (n = 2) and the constant thickness 
aluminum and copper fins. In these figures, we have 
used V = 100 cm3, k,, = 382 W *mm’ *KU’, k,, = 228 
W*m-‘*K-l, h = 200 W-m-**K-l, r0 = 0.05 m, 
T,, = 400 K and T, = 300 K. The plot of reduced 
temperatures (0) vs reduced radius (5) is presented in 

k C” = 382.00 W/m.K 
k a1 = 228.00 W/m.K 
h = 200.00 W/m2.K 
To = 100.00 K 
r 0 = 0.05 m 
Q = 2.00 

0.6 - 
Copper (optimal profile) 

I _. 
1 1.5 2 2.5 

5 = r/rod 

Fig. 6. The reduced temperature (0) vs reduced radius (0 for an optimum profile and constant thickness 
fins : performance of aluminum and copper fins. 
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1000 

k C” = 382.00 W/m.K 
k al = 228.00 W/m.K 
h = 200.00 W/m?K 
T, = 100.00 K 
r0 = 0.05 m 
c! = 2.00 

Fig. 7. The heat-transfer rate (4) vs reduced radius (l) for an optimum profile and constant thickness fins : 
performance of aluminum and copper fins. 

Fig. 6. As expected, the variable profile copper fin 
shows the best performance, that is the tip tem- 
perature is the highest in this case. This is also con- 
firmed from Fig. 7. where the local heat-transfer rate 
(4) for any given value oft has the highest value. 

CONCLUDING REMARKS 

The optimum dimensions of circular fins with vari- 
able profile have been obtained assuming one-dimen- 
sional conduction, and neglecting the effect of cur- 
vature and heat-transfer from the tip. The case 
considered is that of a power law profile with tem- 
perature-dependent thermal conductivity. The results 
are expressed in terms of suitable dimensionless par- 
ameters and are presented both in graphical form and 
in terms of regression equations obtained by standard 
statistical techniques. These results can be used for 
design purposes for the range of data we have used in 
developing the regression equations. It should be 
noted that the program developed is general, and 
could take into account the effect of different vari- 
ations of thermal conductivity and fin profiles suitable 
for a given application. 
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